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ABSTRACT

The nonlinear equations of motion for an incompressible simple fluid,

occupying a fixed bounded container, are formulated on the basis of the

“finite-linear" viscoelastic theory for materials with fading memory; this

formal boundary-initial value problem is then viewed as a nonlinear abstract

evolution equation on a certain Hilbert space.

It is shown that a linearized

version of this evolution equation is associated with a linear dynamical

system on this Hilbert space, and several stability and asymptotic behavior
results for this linearized problem are proved through the use of Liapunov
stability methods. On the assumption that the original nonlinear evolution
equation also is associated with some dynamical system on the same space, it
is shown that the rest condition of the fluid is stable and all motions are

bounded. The Liapunov function employed for this purpose can be interpreted

as a mechanical energy function for the fluid.

Key words:

simple fluid, viscoelastic, fading memory, stability, Liapunov function,

dynamical system.

ii

ACCESSION for

NTIS White Section

utt Section O3
UNANNOU:IC™D o
JUSTIFICATION "
__MM

assssssesasseseasseness

T RN el
ISTRIBUTION/VAILABLITY (0ES
AIL_and/or_SPEOIL

Dist.

e —




BRI L30 <15 Vo T e SR e
o i e SN 5

1. Introduction

In this paper we study a boundary-initial value problem describing the

motions of an incompressible simple fluid with fading memory, assuming a
"finite-linear" constitutive equation as formulated by Coleman and Noll (1961),
(1964). Stability results for linearized versions of this problem have been
obtained by Craik (1968) and Joseph (1974), who employed spectral analysis

for this purpose; more recently, Slemrod (1976), (1978) has performed a
stability analysis for one such linearized problem by using the ideas of
dynamical systems theory. We refer the reader to Slemrod (1976) for a critique

of the spectral analysis approach.

Here we are primarily interested in the highly nonlinear equatioms of

motion which result from a careful formulation of the general problem described
above, employing only physically reasonable assumptions. Our most important
assumption is that these nonlinear equations do lead to a dynamical system

on an appropriate state space, and we motivate this assumption by also studying

a linearized version of the problem. Although our linearized problem is

closely related to the linear problem considered by Slemrod (1976), (1978),we

are able.to show that certain of the stability results for our linearized problem
do carry err to the original nonlinear problem, whereas those of Slemrod (1976),

(1978), Craik (1968), and Joseph (1974) apparently do not. Our approach

here is based entirely on the ideas of dynamical systems theory.

In §2 we formulate the basic equations of motion for a simple incompressible

fluid, based on the "finite-linear" viscoelastic constitutive equation of

ﬂ Coleman and Noll (1961). Assuming that for all time t 2 0 (but not t < 0) the

fluid is incompressible and fills a fixed bounded container, we obtain a




formal boundary-initial value problem with history dependence of possibly
infinite duration. Choosing a state space equipped with a ''fading memory"
norm (see Coleman and Mizel (1966)), we view the formal problem as an abstract
evolution equation on this space; tractability of this problem seems to be highly
dependent on selection of the appropriate state space.

As we are unable to prove that our nonlinear evolution equation leads
to a dynamical system, we consider a linearized version in §3. There we show
that this linear evolution equation does lead to a dynamical system (on the
same space), and we obtain certain results on stability, asymptotic stability,
and exponential decay of motions. Although our linear problem is closely
related to those of Craik (1968), Joseph (1974), and Slemrod (1976), (1978),
we make fewer assumptions regarding the deformation history. Finally, in 84

we assume that, in a certain sense, the.ofiginal nonlinear problem is related

to a dynamical system; we.then are able to prove that the rest condition is

stable and every motion is bounded in terms of the initial state of the fluid.
Our results are obtained through the use of a Liapunov function (see Hale (1969))

which we interpret as a mechanical energy function for the fluid.




2. Formulation of the Problem

We consider an incompressible simple fluid occupying a bounded domain
Q€R3, with Cl-smooth boundary I', for all time et = {0,=). Following the
development of Noll (1958) and Coleman and Noll (1961), (1964), we formulate
in this section a set of nonlinear equations of motion based on the 'finite-
linear'" viscoelastic theory.

For this purpose, consider an arbitrary fluid particle that has position
M= (T]l,'n ,T\3) €Q at time t €R+, letting X(T;7T,t) = (xl,xz,xa) €R3 and
p(T; M, t) €R+ denote its position and mass density, respectively, at time TER

(note that t 2 0 but T may be negative). The relative deformation gradient

F(T;T,t) is the second order tensor whose components are given by

; = ) - ‘
fij(T,ﬂ,t) = Bjxi(T,ﬂ,t), where 9, = T It is known that

il
(2.1) p(t;M,t) = p(T;T,t) det F(T;T,t)
for all (T,T,t) €R X Q x RT,
Following Céleman and Noll (1961), we denote by C(T;T,t) the relative
right Cauchy-Green tensor with components c ., = f _f Here and in

i “ki'kje

the sequel we employ the convention of summation on repeated indices. Under

the assumption of isotropy and homogeneity (see Coleman and Noll (1961), (1964)),

the basic constitutive equations of the "finite-linear' theory of viscoelasticity

state that, for a compressible simple fluid, the components of the stress

tensor S(T,t) are given by

s = - Feocesn,0) + foms,p(c;n,:))[ckk(c-s;ﬂ.t) -6 das) o
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where 61 denotes the Kronecker delta and‘;,‘z, ; are scalar-valued material

j
functions (see equation 5.18 in Coleman and Noll (1961)). Here we assume

the fluid to be incompressible for T ER&} hence, the density is constant and
we set p(T;M,t) = 1 for T€R+, neq, :ER'*, without loss of generality. Under

this assumption the above expression for stress must be replaced by

F . 5
(2.2) sij(n,t) ==-1=(Tl,t)6ij -Jom(s)Ecij(t-s;Tl,t) -6ides » (Me) €QxXR

where p(T,t) is a constitutively indeterminate quantity and m :R+ - R is a

material function. We assume that this function satisfies the following

conditions:

= BF o 2) - mect@h ne@hH
(2.3) b) m is nonnegative and nonincreasing on Rt -

c) m(s) >0 for s€[0,r); m(s) = 0 for s€(0,r) ,

where r > 0 may be infinite. This mild assumption follows from the concept
of "fading memory' as stated by Coleman and Noll (1961).
We remark that the validity of equation (2.2) depends on the assumption

of incompressibility for'réﬁf, but does not presume incompressibility for

T < 0. Furthermore, we note that, by equation (2.1), the assumption

p(T;M,t) = 1 for 7 €RT implies that

det F(T;T,¢) = 1/p(T;T,e) , TER
(2.4)

det F(T;M,t) =1 , rert

for all (T,t) €0 x RY,




We assume the fluid container to be fixed in some inertial system, and that
all particle positions are measured relative to this inertial system. We also
assume the body force (per unit mass) at (T,t) to be the gradient aiq(n,:) of

a known external potential gq:Q X RY R, Consequently, the balance law

for linear momentum takes the form

a2
—T—z— Xi(T;ﬂ,t)

——

(2.5) =23.q(Nt) + 3., (N,t) , (N0)€axRp" .

s 5°4

It is convenient to introduce some new notation; let

v(l,e) = & X(T;ﬂ.t)l :
T=t

U(S,T\:t) s X(t‘s;n,t) L X(t;'ﬂ,t) = X(t'S;T\.t) v n »

for all (s,TM,t) ert x qx ﬂ+. For a particle with position M€Q at time t€ﬁ+,

v(M,t) represents its velocity at time t and u(s,T,t) + T its position at

time t-s S t. Some straightforward manipulations show that

2

- [-)
(2.7) e RULLTINERAULIAAULRS AAUL R

2.8) e (s0 = - v MO+ 3u 60l - 5 vy

j

W 0,0 =0 , Zu(s,n0l =-v@o
s=0

(2.10)

cij(t-S;T\,_t% 5ij fki(t-ssﬂ,t)fkj(t-s;“,w - Gij

aiuk(sin’t).ajuk(s)n’t) + aiuj(s"n)t) + ajui(s)“lt)

for all (s,M,t) €RT x QX R, Since the first of (2.9) implies 3,u,(0,7M,t) = O,

3
relation (2.4) leads to the condition




|

de:lajui(s,n,c) * 6, | = dec‘Bjui(O,T],ft) + 8

J J

= detld, . | =1 ,
1]
for all t 2 s 2 0, MEQ; hence, we also have

(2.11) - 0= (%; detfdu, (s,M,0) + 6,0 ) = -g-s- 3, (5,7, )
s=0 s=0

= -3y (o) , Me)eaxrt |
where we have used the second of (2.9).
Upon collecting (2.2), (2.3), (2.5)-(2.11), and making a final physical

assumption that the velocity of the fluid is zero at the boundary I', the

fluid motion is seen to be described by the formal evolution equations

(2.12) S2 v, (M) = - v, (DD (1) - 3,p(N,) + 3,a(,1)
-3rr()[a (s,Mpt)-3.u (s,M,t) + B,u.(s,T,¢t)
j d'om s iuk S, My j Kk S, 1y i j S, iy

+ajui(s,T1,t)st . men

(2.13) S uEmY = - v Db+ du (,0,0]

J

-Zu sy, DR Ra

subject to
3,v, (M) =0 , méa ,
(2.14) 0 0,0 = 0= v, (Nt) + g=u (s,H0)| , Mea ,

s=0

Vi(“,t) =0 ’ Tler ’

for all t:€ﬂ+, with prescribed initial data (vi(ﬂ,O),ui(s,ﬂ,O)) satisfying (2.14).

i - e e e r——
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The unknown pressure gradient in (2.12) creates certain difficulties, and
we now employ a well known device for removing this term (see Fujita and Kato
(1964)). Consider the Hilbert space (32(0))3, equipped with the usual inner
product, and let Il :(SZ(Q))3 - (£2(Q))3 be the orthogonal projection whose

range R([l) is the closure in (32(0))3 of Ge(c:(n))i*lai';i(m =0, TEQ].

N v LT ias. e, TR TR WIS TSN e

The range of Il is orthogonal to the closure of the set of elements of (£2(Q))3
which are gradients of scalar-valued functions. Writing [l as a symmetric

second order tensor “ij and applying it to (2.12), we find that

s rgindiad il A M o Ll o A it il e Cocadbbaey: Mbbiied

(2.15) %E v,(M,t) = - ﬂizvj(ﬂ,t)ajv‘(ﬂ.t)

r
- Jom(s)[axuk(s,ﬂ,t)°Bjuk(s,'ﬂ,t)+aju‘(s,n,t)]ds , 1€Q

Once a solution (v,u) of equations (2.13)-(2.15) is found, the corresponding

pressure gradient Bip(ﬂ,t) can be recovered through equation (2.12), or

through the equation obtained by applying the projection I -1 to (2.12).

We wish to'emphasize two points about our physical assumptions.

It should be noted that conditions (2.14) do not require the fluid to

have always occupied the domain Q in the past; i.e., for s > t 2 0, we

have not assumed that

u(s,T,t) + Tlen ’ nea ’

| (2.16)
! 2 U(S,n,t) =0 ’ Tler .

Secondly, conditions (2.14) do not require the fluid to have always been

incompressible.in the past; i.e., for s > t 2 0, we have not assumed that



(2.17) detlajui(s,n,:)+6ij\-1 SRR J

It is apparent that at least the first of these non-assumptions is physically

important. :

We now wish to put (2.13)-(2.15) in the form of an abstract evolution

equation on an appropriate state space. For this purpose, first consider
the linear space S of pairs (v,u) in (C”(ﬂ))3 X U ® )3 , where
2 0<p<r P

Py = (weC™(Lo,r) X W|u(s, M =0 for (s, €[8,r) x 0}

such that vE€R(I) and u(0,T) = 0 = v() + %s- u(s, ) for all MEQ. Recalling
s=0
conditions (2.3) on m(s), where r > 0 might be infinite, we define

lew,wll = ] [aar2 3,u, (s, Vds} da
(v,u) i ini(Tl)vi(Tl) + Jom(s) kui(s,'ﬂ)~ B4 (s, Mds

and we let L denote the Hilbert space obtained by | -“-Ll- completion of S.

Also, for x = (v,u) €S we define

Nx = (w,z) ,

(2.18) wi(ﬂ) = ﬂﬂvj(n)ajvz(ﬂ)

5.

"R ]0m<s>[axuk<s,n)‘ajuk<s,m +3.u,(s,Mds
(6, == v (D6, +3,0(,D]-2%u (D

LT, JUELEY T T e T e Yy ’

and we consider a metric on S defined by dN(x,i) = ||x - ;E“I + |[Nx -N)?”I, x,x €S,
We denote by #(N) the dN - completion of S, and we let N: (8(N) €X) = X be the

operator defined on #(N) by (2.18). Clearly, 8(N) is dense in X, and the

completeness of (ﬂ(N),dN) implies that N is closed as a (nonlinear) mapping

from X to X,




Within this setting we can replace (2.13)-(2.15) by an abstract evolution

equation on X, given by

x(cd = Wx(r) a.e. ¢t ert 3
(2.19)

x(0) = xOGI :
This highly nonlinear evolution equation is very difficult to analyze; even
as to existence and uniqueness of solutions. However, for . Wl 0, we notice
that equation (2.19) does admit as a solution the rest condition, x(t) = 0
for all cEIiP. In the following section we study a linearized version of this

equation and show that it leads to a stable linear dynamical system on X.

P
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3. A Linearized Problem

We are unable to prove that the nonlinear abstract evolution equation
(2.19) is related to any dynamical system (see Hule (1969)); in 34 we will simply
assume that such a relationship does exist. To suggest the plausibility of
this forthcoming assumption, we now perform an appropriate linearization
of (2.19) (on the same Hilbert space X) and show that the resulting abstract
evolution equation does lead to a (linear) dynmamical system on L. We remark
that this Hilbert space is different from the one used by Slemrod (1976), (1978)
for a similar but not identical linear problem.

Our first step is to return to the formal equations (2.13)-(2.15) and
delete all nonlinear terms; hence, conditions (2.14) are retained, while

(2.15) and (2.13) are replaced by

o) rr
(3.1) 3t Vi('ﬂ,t) = - nilaj Jom(s)ajull(s,ﬂ,t)ds . REL
(3.2) Lou M &= L) - 2w e N . (s ER X0
o mfm e N S [t Qgling : 1 !

for all t:GRfﬁ We continue to assume that m(s) satisfies conditions (2.3).
Recalling the linear space S and the Hilbert space X defined in Section II,

we define, for x = (v,u) €S,
Ax = (w,z) ,

b oo
(3.3) W= - Jom(s)ajuz(s,'ﬂ)ds :

o =)
zi(s,ﬂ) = - vi(T\) il ui(S.ﬂ) R




and we consider a norm on S defined by Hx“A = Iixllx + HAxHI, x €S, We denote

by 8(A) the "“A- completion of S, and we let A: (8(A)<X) = X be the linear
operator defined on #(A) by (3.3). We see that 8(A) is dense in X and A is
closed as a linear mapping from X to X.

The formal linear problem (3.1), (3.2), (2.14) leads us to consider

a linear abstract evolution equation defined in the Hilbert space X by

%(t) = Ax(t) , te€RT |

x(0) = xOES(A) cxr .

We wish to show that (3.4) is related to a linear dynamical system on X, and
that the motions of this dynamical system are (unique) solutions of (3.4)
for xoeﬂ(A).

We recall (see Hale (1969), Yosida (1978)) that a dynamical system

{T(t)}tzo, on a metric space L, is a family of continuous operators

T(t) : X = X such that T(-)x RY =~ % 48 continuous, T(0)x = x, and

T(t+h)x = T(t)T(h)x, for all t,h€R", x€X. The mapping T(-)x:R" = X and

the set Y(x) = LZJOT(t)x are called, respectively, the motion and the positive
12

- orbit corresponding to the initial state x€X., A subset GSX is said to be

positive invariant under {T(t)} if Y(x) G for every x€G. A motion T(-)x

t20
is said to be stable if, given any € > 0, there exists a neighborhood 1’16 (x)

of radius 6 > 0 such that yena(x) implies T(t)the(T(t)x) for all t€R+;

T(*)x is asymptotically stable if it is stable and T(t)y = T(t)x as t = &

for all y in some néighborhood of x. Furthermore, we recall that {T(t) }tZO

is called a linear dynamical system if X is a Banach space and T(t) : X = X is

a linear operator for every tER+; the infinitesimal generator B: (8(B)<SX) = X

of such a linear dynamical system is defined by

£
N m‘.’-.ﬂqﬁ. g PN T SO
A e A e ¢ et A2
IR~ - SRS S—




12

= lim —[T(t)x 5
t\o

where #(B) is the set of x€X such that this limit exists. If B is the

| infinitesimal generator of the linear dynamical system {T(t)]t20 defined

‘ on X, then for every xoeﬂ(B) the motion T(.)xo is the unique strong solution
E of the equation x(t) = Bx(t), t 2 0, for the initial state x(0) = X .

With this terminology, we can prove the following result for our linear

abstract evolution equation (3.4).

Theorem 3.1: For m(s) satisfying (2.3), the linear operator A: (8(A)<X) - L

is the infinitesimal generator of a linear dynamical system {T(t)}tzo on X,

with [lT(e)xlly < lixlly for al1 t€RT, x€X,

Proof: As 8(A) is dense in X, for the theorem to be proven it is sufficient
(see Yosida (1978)) to show that -A is ”-Hx-accretive and that the range
R(I-A) = L. Using the natural inner product for X, and considering arbitrary

x = (u,v) €8(A), we see that :

(x,Ax) = - I v, (Tl) ﬂ-u'aj ‘[m(s)B uz(s,'ﬂ)ds < (9]

Rad r
- jnfom(s)akui(s,m-aktvi(n) +2 4 (s, s a0 |
. T
“ ul'nvz(ﬂ)-aj Iom(s)ajul(s,ﬂ)ds &
JQ k i(T\) Im(s)a u (s,Tl)ds dQ

T
-3 Uo'n(s) & [3,u,(s,M-d,u, (s, ]ds a0

1 Ir
= i XQ om' (S)-akui(S,'ﬂ)-Bkui(s,“)ds a0 €0 :

hence, -A is accretive.

e At ————————— T — R PR T TR




As -A is accretive, it follows that I -A possesses a bounded inverse
defined on R(I-A). As A is a closed operator, it follows that (I -A)-l is

closed and bounded; hence, R(I-A) = X if R(I - A) is dense in X. With this

in mind, let (w,z) be a fixed but arbitrary element of the dense set SCX,
and consider the equations

vi('ﬂ) + nuaj O[Zm(s)-ajuz(s,mds = wi('ﬂ)

t]

(3.5)

3 %
ui(s,Tl) + vi(Tl) e ui(s,TD = zi(s,ﬂ)

1f thesg equations can be shown to have a solution (v,u) belonging to $(A)

we will have shown that R(I -A) 25, and by the denseness of S in X it will

follow that R(I-4A) = X. Formally, the second of equations (3.5) implies that

S
(3.6) ui(s,ﬂ) = - (l—e—s)vi(ﬂ) +e® joegzi(é,'ﬂ)dE :

hence, u,(0,T) = 0 and 2. u.(s,'ﬂ)! = - v, (1) for all ME€Q. Defining
i 9s i ) i

o= J:m(s)(l-e-s)ds 4
0
(3.7)

g T s s £

Wi(T\) = Vi('\'\) - ﬂﬂ.aj Iom(s)e Bj Joe z, (§,MdEds ,
we note that wER(I) N (Cn(ﬁ))s, and (2.3) implies that 0 < @ < ®, Using
(3.6) and (3.7), the first of equations (3.5) becomes

(3.8) vi('ﬂ) - an

13
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It follows from elliptic theory (see Mizohata (1973)) that (3.8) admits a
solution vER () N (c"’(a))3 such that vi(ﬂ) = 0 for ﬂEf; inserting this v
in (3.6) we see that u€ (Cw([O,r) xa))3- If r < ®, we now can conclude that’
(v,u) €8(A). 1fr =, let 0 <B < @ and note that, by (3.5) and through

the same argument used in proving that -A was accretive,

\ P
ll(w,z)lli 2 Jn{w (v, (D) + Jim(s)ajzi(s,TD-ajzi(s,‘ﬂ)ds} aQ

2 JI‘ {vi('ﬂ)vi('ﬂ) + fm(s)a

B jui(s,ﬂ)-ajui@,n)ds} dQ

r
» JQ{"ilaj Izm(s)ajul(s’mds'"ikah Jri‘“(s)ah“k(s’mds

(2.

\a r 2 3 - 1
+ .om(s)aj Lvi(ﬂ) + 3 ui(s,T\)] -Bj [vi('ﬂ) + e ui(s,'ﬂ)_lds}dﬂ 2

Letting B = r = ®, we see that (u,v) €8(4), with H (u,v)”';'_ + HA(u,v)H% < H(w,z)”% .

Hence, for any r € (0,<), we have shown that (3.5) has a solution (v,u) € 8(A)

for every (w,z) €S, and thus we conclude that R(I-4) = L. The proof is complete.

Theorem 3.1 shows that our abstract linear evolution equation (3.4) has
a unique solution for every xOGS(A). Furthermore, as the dynamical system
{T(t) }CZO is linear, this theorem implies that all positive orbits are bounded
and every motion is stable.

For r < «» the injection (S(A),Il-uA)C)I is compact, and it follows that
(1 -A).1 is a compac-t operator. 'Hence, if r < ®, we may now conclude that
all positive orbits are precompact (see Dafermos and Slemrod (1973)), and

this fact enables us to prove the following result.

il




Theorem 3.2: For m(s) satisfying (2.3) with r < «, every motion of {’r(t)]tzo

is asymptotically stable.

Proof: Defining V:X =R as V(x) = {x,x), and defining V:X ~ R by

¥(x) = lim inf% v(T(t)x) -v(x)] , x€X ,
£%0

we see that ‘.7(x) = 2(x,Ax) for x€8(A); therefore, our accretivity argument shows

that
. r v
V(x) = drnjom (s)-akui(s,TD-akui(s,TDds d) 3 - W) s 0

for all x = (v,u) €8(A). By Theorem 3.9 of Walker (1976), it follows that
V(x) £-W(x)S 0 for all x£X.: Hence, V is a Liapunov function on L (see Hale (1969)).
Conditions (2.3) on m(s) imply that m'(s) < 0 for all s in some nonempty

open set J& (0,r); consequently,

{xGIl\.I(x) =0} c {(v,u) GIUanui(s,TD-akui(s,'ﬂ)dﬂ =0 a.e. s€3}

Using equation (3.4), it is not difficult to see that the largest positive
invariant subset M’ of {inl{l(x) = 0} is nt - {0}. As all positive orbits
are precompact, LaSalle's Invariance Principle (see Hale (1969)) now implies
that T(t)x = 0 as t =+ ®, for every x€X; hence, x = 0 is an asymptotically
stable equilibrium. By the linearity of the dynamical system, it follows that

all motions are asymptotically stable, and the proof is complete.

In two recent papers Slemrod (1976), (1978) has used similar methods to

study a problem very closely related to our formal linear problem (3.1), (3.2),

e A b e St i A o\ b
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sl ‘ e it . o i i e seen

(2.14). Rather than using the pair (v,u) to represent the state of the system,
Slemrod chose the pair (v, - %; u). He also placed additional restrictions

on the history - corresponding to (2.16) and a linearization of (2.17), namely

u(s,H + M€Q |, (s,M) ert xn 1
(3.9) u(s,M =0, (s,MER" xT ,

du (s, =0 , (5,1 ert x o .

These conditions require the '"linearized fluid" to have always occupied the

container and to have always been incompressible. Using a different space

and topology, Slemrod (1976) was then able to prove that his formal equations

led to a stable linear dynamical system, paralleling our Theorem 3.1l. He

also obtained an asymptotic stability result under the additional assumption

that Irszm(s)ds < @, which does not presume a finite memory length r. Our

Theoreg 3.2 assumes r < ®, but does not require the additional assumption (3.9).
Under further assumptions on the behavior of the material function m(s),

Slemrod (1978) proved an exponential stability result. We will now present

a'result on exponential decay, in our topology, for those initial

states in X that happen to satisfy (3.9). To this end, let G denote the

]l-nI-complei;ion of the set {(v,u) €5](3.9) holds].

Theorem 3.3: Let m(s) satisfy (2.3) and let there exist §2 2 §1 > 0 such that

§m(s) £ - m'(s) S §,m(s) for all s€lo,r) .

0

Then there exist M > 0, ¢ > 0, such that HT(t)xHx £ Me x”x for all

tert, xeg.

|
|
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It is not difficult to see that G is positive invariant under

{T(t)}tzog i.e., Y(x)<G for x€G. Defining U:X = R as

r
v = lxllZ + 8 jﬂvi(n> | mo)u (s, Mds e , x€L ,
0

where B > 0, we find that, for x€G,

1im inf & [u('r(t)x) -U(x)])

U(x) =
tNO
i

- -as ] v, v mas ngvi(m j'om' (s)u, (s, Dds a0

R d)(jr 2 n)d>dr

JQQ "om(S) ju5(s:Mds ) om(S) jui(s,Wds ) ad
(\r

+ JnJom'(s)ajui(s e aju (s,Hds dO ,
’.r

where a = J m(s)ds,
0
We wish to show the existence of numbers cl 2 <, >0, € >'O, such that
c ”x“% 2 U(x) 2 c2HxH2 and U(x) £ - 2eU(x) for all x€Q. We first notice

that, by Schwarz' inequality,

z_
S o m(s)a u (s,’ﬂ) Y- ui(s,Tl)ds .

v

r
jbm(s)ajui(s,ﬂ)ds
Also, for all z € ((‘.::'(Q))3 it is known that

[z ma < CERUERRUTY

for some k((}) < ®; hence, for (v,u) €@,




oo ) g g S

18

2 .
: ljn‘n"i(ﬂ)‘!:m' (S)ui(S.ﬂ)ds dﬂl H 'Jr(l”[:)m' (s)v, (v, (Dds dﬂl Imr;m' (s)ui(s.Tl)ui(s,T\)ds dni

T

< m(0)k Jrnvi(ﬂ)vi(ﬂ)dﬂ-l urojlom' (s)BJui(s,Tl)oajui(s,TDds dQI

r

r
< m(O)k§2 Jnvi(T\)vi(T\)dﬂ-“rojom(s)ajui(s,Tl)-ajui(s,-T\)ds a |,

where we have applied Schwarz' inequality. Similarly,for x€G,

o 5 2
."Q"i(“)IO“‘<S)“1‘S'“)dS dnl <ok |

r
nvi(n)vi(mdn-"{ [Mns)a u (s,+3,u; (s,Dds a0t . :

Qo ji

It then follows that

lueo - i3] & Ga/2lixlf

U(x) < - a8 T vi(T\)vi(Tl)dﬂ
6

y/ e %
+ £08,m0)( v @aa) (] ] a2y e, mas )

r

ok
= (gl -aB) JQJom(s)ajui(s,TD.ajui(s,mds e} ¥

for all x€G. Choosing B > 0 so small that Bak < 2 and B(k%zm(O) + MZ) < 4&{1,

we see that suitable numbers c,, c,, € do exist. As § is po.sgi?ﬁr:"iﬁvéfi.ant,
it follows that U(T(t)x) S e 2°Cu(x) for all t €RY, x€G; hence, we find that

Izceydiy = ey re)e” iy , ecer* |, xeq

and the proof is complete.
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In this section our principal purpose was to prove that the linear abstract

evolution equation (3.4) generates a dynamical system on L. We have gone

beyond this objective, considering stability properties and exponential decay
of motions, in order to provide a basis for comparison with the related

results of Slemrod (1976), (1978).




4. The Nonlinear Problem

We now return to the nonlinear problem described by the abstract evolution

equation (2.19),

(4.1) %(t) = Nx(t) a.e. t€RT

x@)=x061 .

where N is the closed, densely defined operator described in §2. CQuestions
regarding existence an& uniquenes$ of solutions of (4.1) are quite difficult
to resolve, and we are not able to prove that (4.l) is associated with a
dynamical system on X. However, assuming that it is, we shall show in this
section that all positive orbits are bounded and the equilibrium at x = 0
is stable.

In 83 we showed that linearization of the problem led to a d}namical
system on the Hilbert space L. This suggests that it is plausible to assume
that the nonlinear problem also is associated with a dynamical system on X,

in the following sense.

1

Assumption 4.1l: For all sufficiently small A > 0, R(I-\N) = X and Jk = (I-N)"

exists; moreover, with J. = I, there exists a dynamical system {S(t)} on X

0 t20
such that J:/nx - S(t)x as n—~ =, for every x€X, t €R+, the convergence being

uniform on compact subsets of ﬁ+.

This particular association between the dynamical system {S(t)}t2:0 and
the operator N is motivated by considering a backward-difference approximation

of equation (4.1) given by




_—

\ ;
x(:_t/-x(%g-ﬁ)‘ENx(%} A T e B t ert £

x(0) = xoeT: .

It is seen that for sufficiently large n, depending on t, this equation has a

solution x(t) = J: nxo if R(I-MNN) =X and if JX = (1I- m>'1 exists for all

/
sufficiently small A > 0. Under Assumption 4.1, J::/nx0 is a Hille-type
approximation of S(t)xo (see Yosida (1978)).

If wI -N were accretive for some wER, then the theory of Crandall and
Liggett (1971) would show that Assumption 4.1 holds if and only if R(I - \N) = X
for all sufficiently small A > 0 (see Yosida (1978)). Unfortunately, wI-N
is not accretive and we are unable to prove the validity of our assumption,
evenA if R(I-NN) = X,

It is remarkable that, under Assumption 4.1, it is easy to prove that

all positive orbits are bounded and the equilibrium at x = 0 is stable.

Theorem 4.2: For m(s) satisfying conditions (2.3), and under Assumption 4.1,
“S(t)x“x < iixlix for all teﬁ_+, x€X, Furthermore, S(t)x = 0 as t = ® if

the positive orbit Y(x) is precompact.

Proof. Defining V(x) = ”xH% and

¥(x) = lim inf £ [V(S()%) - V(x)]
t 0

for x€X, we note that for A\ > 0 and x€8(N),
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V(x - \Nx) 2 V(x) - 2A{x,Nx) ,

: r 23
(x,Nx) = 'jﬂ"i(m’"ul"j(“)'aj"z(m+3j lom(s)tazuk(s,'ﬂ) B u, (s, +3uy (s, n)]ds> an

- j !l‘rm(s)a

gl (s ™»- ak vi('ﬂ) + v - aju (s, + =— ui(s,'ﬂ)} ds d0

r
= - -2- ij(ﬂ)‘aj{vl('ﬂ)v‘('ﬂ) + j. m(s)a u (S,T\) - U (s Tl)ds} dQ

r

N
Jnvl(n)'aj Jom(S)[3zuk(s,TD'ajuk(s,TD + ajuz(s,TD]ds a0

T

j('ﬂ) .Jrom(S) [Bjui(S,n) -akui(s,'ﬂ) + akuj (s, Jds d

rav
Jﬂk

;fﬂjo m(s) & (3,4, (s, M3, (s, Jds a0

T
1] . = - l
IQ om (s)akui(s,ﬂ) du,(s,Mds d = - 5 W(x) S0

As 8(N) is dense and Assumption 4.1 is made, Theorem 3.4 of Walker (1979)

shows that \.I(x) £ - W(x) < 0 for all x€X; consequently, V(S(t)x) S V(x) for

all t€R+, x€X, As in the proof of Theorem 3.2, we also see that the largest
positive invariant set mt in {x GI["J(x) = 0} is " - {0}; hence, if x is

such that Y(x) is precompact, LaSalle's Invariance Principle (see Hale (1969))

implies that S(t)x = 0 as t = @, The proof is complete.

Theorem 4.2 shows that all positive orbits are bounded and the equilibrium
at x = 0 is stable. If all positive orbits could be shown to be precompact,
Theorem 4.2 would imply that x = 0 is globally asymptotically stable.

Although we do not know that all positive orbits are precompact, the last result
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of Theorem 4.2 does show that there exist no equilibria (steady flows) other
than x = 0 (the rest condition), and it also shows thaf there are no nontrivial
periodic motions (nonsteady periodic flows).

We remark that the function V(x) = qui used in the p?oof of the foregoing
theorem is a Liapunov function for {S(t:)}':20 (see Hale (1969) and Walker (1979)).
Useful Liﬁpunov functions often are extremely difficult to discover for a
highly nonlinear problem, and discovery of a topology suitable for a state
space may be even more difficult. In fact, these difficulties are so inter-
related (see Walker (1976)) that a '"formal" Liapunov function (for the formal
equation) often is sought a priori, as a means of suggesting a suitable
topology for the state space., This is what led us to set equation (4.1) and
Assumption 4.1 in the particular Hilbert space I: rather than in any other
metric space.

The function V is the only Liapunov function that we have been able to
find for the nonlinear problem. This is in contrast with the linearized
problem of §2, which admits an infinite family of useful Liapunov functions,
;nd leads to a corresponding family of linear dynamical systems on state

spaces differing in their topologies. The linear dynamical system and

Liapunov function of Slemrod (1976) belong to Ehi;”fami1§;“ﬁhiéﬁméénl
be defined in terms of the set of linear operators that commute witﬁ the
linear operator A of (3.3). However, among all of the functions in this
family, it appears that only the function V employed here is useful with the
original nonlinear problem.

Our Liapunov function V admits a simple physical interpretation. To
demonstrate this point most clearly, we return to the formal problem of §2 and

relax certain of our assumptions. Rather than assuming that vi(ﬂ,t) = 0 for




(M,t) €T x R+, let us assume only that fluid can not cross the boundary T of Q;

that is, vi(ﬂ,t)ni(n) = 0 for (M,t) €T X R+, where n(T) denotes the unit
outward normal to I'. Let us also consider a general body force field fi(ﬂ,t),
rather than one derived from a potential q(T,t). If we retain all other

assumptions of 82, formal computations lead to

r
%E V(x(t) = Jgjom'(s)akui(s,ﬂ,t)akui(s,ﬂ,t)ds dQ + 2P(t)

s 2p(t) , tert |

where P(t) is the external power,

b )
P(e) = jﬂfim,t)vi(n,c)dm | n;(Msg L ov a0

Consequently, we see that % V has the basic property of a '"mechanical energy
function" for the fluid. When all assumptions of 82 are applied,

Pee) « 0 and - Vixte)) £'0 for ail tER’.

dt
The assumption of 'fading memory" played a crucial role in our analysis;
however, we remark that conditions (2.3) can be slightly weakened. It is not

difficult to see that we do not actually need nlecl(ﬂ+) and, except for Theorem 3.3,

all of our theorems continue to hold if conditions (2.3) are replaced by
P C
a) m:R - R is integrable, with 0 < I m(s)ds < ® |
0

(4.2) b) m is nonnegative and nonincreasing on Rt 5

c) m(s) >0 for s€[0,r) ; m(s) =0 for sg,r) ,

where r > 0 may be infinite.
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